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Model Order Reduction (MOR) methods enable reduction of the computation time when dealing with parametrized numerical 

models. Among these methods, the Proper Orthogonal Decomposition (POD) method seems to be a good candidate because of its 
simplicity and its accuracy. However, the accuracy strongly depends on the choice the parameter set chosen to construct the reduced 
basis. In this communication, we propose three different procedures for an adaptive construction of the parameter set. The accuracy of 
the three methods is compared on a 2D Finite Element model example in magnetostatics.  
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I. INTRODUCTION 

o design  an electromagnetic device or to quantify the 
impact of uncertainties, parameterized models are needed. 
In order to obtain  good accuracy, numerical models based 

on the Finite Element (FE) method are often used. The issue is 
then the computation time which can be very long especially if 
the number of parameters is high, more than about a dozen. 
Recently, Model Order Reduction (MOR) methods, like the 
Proper Orthogonal Decomposition (POD) method or the 
Reduced Basis (RB) method, have been applied in 
computational electromagnetics for uncertainty quantification 
or design [1,2]. An approximation of the full parametrized 
model (the original FE model) is then sought in a space 
spanned by a reduced basis, which enables one to reduce the 
number of degrees of freedom [3]. The equation system is 
much smaller than the full model. However, the accuracy of 
the reduced model is strongly related to the choice of the 
reduced basis which is obtained from the solutions of the full 
problem for particular parameter values. 

In this communication, we propose to compare three 
iterative procedures to determine the reduced basis based on 
different error indicators. These approaches are compared in 
terms of accuracy on an example, a magnetic holder whose 
geometry is defined by 11 parameters.  

II. REDUCTION OF A PARAMETRIC MODEL USING POD 

METHOD 

The discretization of a parameterized magnetostatic 
problem using the FE method leads to the following linear 
system of equations: 

S(p) X(p) = F(p)   (1) 

Where p=(p1,..,pM) are the M input parameters, S(p) is the 
N×N stiffness matrix, F(p) is the N×1 source vector and N is 
the number of degrees of freedom. The solution X(p) enables 
one to determine the field distribution and also the quantities 
of interest which are usually either linear functions of X(p) 
(flux) or quadratic functions of X(p) (energy or force). If we 

denote Q as the quantity of interest which is a quadratic 
function of X(p), it can be written under the form: 

Q=X(p)t D(p) X(p)   (2) 

With D(p) a matrix. If the model (1) and (2) is applied in a 
design process or for uncertainty quantification, the number of 
calls (solutions) can be very high especially if the parameter 
number M is significant due to the “curse of dimensionality”. 
To decrease the computation time, one should either limit the 
number of calls or reduce the size of the linear system of 
equations (1). The POD method, detailed in the following, is 
one of the most popular MOR methods. Consider a set of Z 
parameters (p1,…,pZ) and the N×Z matrix X of the associated 
solutions (X(p1),…,X(pZ)). We define the linear space K 
spanned by the vectors (X(p1),…,X(pZ)) and the N×R matrix 
Ψ  (R≤Z) of the vectors (ΨΨΨΨ1,..,ΨΨΨΨR), an orthogonal basis of the 
space K. The matrix Ψ  can be obtained by a Singular Value 
Decomposition (SVD) of the matrix X. The idea of the POD 
method is to seek an approximation of the solution of (1) in 
the space K, which means that X(p) is approximated by the 
following linear combination: 
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The approximation has to satisfy (1), which is not 
generally possible because the equation system is 
overdetermined. By applying the Galerkin method, the vector 
Xr(p) has to satisfy an R×R linear system of equations: 

Ψ
t S(p) Ψ  Xr(p) = Ψ t F(p)    (4) 

The size of the system (4) is then equal to R, which is much 
lower than N, the size of the full system (1). The solution of 
the system is much faster reducing significantly the 
computation time. The accuracy of the method is closely 
related to the choice of the parameters (p1,…,pZ) used to 
determine the reduced basis. In the following, we propose 
different strategies to determine them adaptively.    

III.  ADAPTIVE PROCEDURE 

To determine adaptively the parameter set, an error 
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indicator is needed that provides information on the error 
between the solution X(p) of (1) and the solution Xr(p) of (4) 
for a given value of the input parameters p. The idea is to 
obtain this information without solving (1), which is time 
consuming, that is to say without knowing X(p). Let us 
consider the step n of adaptive procedure to construct the 
reduced basis Ψ n. The reduced basis has been obtained by 
solving (1) for a parameter set (p1,…,pn). We select now a set 
of new parameters (p1,..,pk). In our case, k is equal to the 
number of parameters M and the pi’s are determined from pn 
by changing only the ith component of pn. The reduced 
problem (4) is solved for the k parameters and we denote 
Xr(p

i) the k solutions. Then, the parameter pi leading to the 
highest error is selected to complete the parameter set. Three 
error indicators are proposed. The first error indicator ε1

i 
consists in calculating the residual of (1): 

   ε1
i=Ri

t Ri with Ri=F(pi)-S(pi)ΨΨΨΨn Xr(p
i)   (5) 

We can see that if Xr(p
i) is equal to X(pi) then the 

indicator is equal to zero. We introduce a second error 
indicator ε2

i  that is more oriented towards the calculation of 
the quantity of interest Q defined in (2) and which is given by: 

  ε2
i=Ri

t D(pi) Ri     (6) 

Finally, we introduce an indicator ε3
i based on the error 

estimator proposed in [4] which is given by: 

ε3
i=Ri

t S-1(p0) Ri     (7) 

The parameter p0 is a “well chosen” value of p. The 
calculation of the inverse of S(p0) has to be done only once 
before the adaptive process. The next parameter value pn+1 is 
taken equal to pi which corresponds to the highest value of εj

i, 
with j equal to 1,2 or 3 depending on the error indicator used. 
Now, the full problem (1) is solved for p=pn+1. A new reduced 
basis ΨΨΨΨn+1 is calculating from Xn+1=(X(p1),…, X(pn),X(pn+1)). 
The process is repeated until the error indicator is sufficiently 
small.   

IV.  EXAMPLE OF APPLICATION 

We consider a magnetic holder modelled by a 2D FE vector 
potential formulation. The geometry of the device is defined 
by 11 parameters, which are represented in Fig. 1. The 
quantity of interest is the force experienced by the mobile 
plate when the coil is not energized (due only to the permanent 
magnet). The force has been calculated using the Maxwell 
Stress Tensor and can be expressed under the form (2). We 
have fixed nominal values for the parameters pi

nom and 
consider an interval of variation of [0.1pi

nom,1.9pi
nom] for each 

parameter. We have applied the previous adaptive process for 
the three error indicators. This leads to three different reduced 
basis and so three different reduced models (4) denoted RM1, 
RM2 and RM3 obtained from the error indicators (5), (6) and 
(7) respectively. In order to compare the accuracy of the 
reduced models, we have generated a sample of N parameter 
realizations (p’ 1,…,p’N) is generated using the Latin 
Hypercube Sampling technique. We solve the three reduced 
problems and the full problem (1) for the N realizations and 
calculate the forces FRMj(p’ i) and Ffull(p’ i) and the energies 

ERMj(p’ i ) and Efull(p’ i ). 
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Fig.1. Half of the geometry of the magnetic holder and  the definition of the 
parameters (rcul,raim,rbob,e,rclo,ep,hclo,haim,hent,hbob,hpm) 

The errors in the L2 and L∞ sense are defined as:  
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Table 1 shows the errors obtained for a reduced basis of size 
Z=10 and Z=30 with the three reduced models. The three error 
indicators leads to three different parameter sets (p1,…,pZ) and 
so to three different models. We can see clearly an error 
reduction when the size Z of the reduced basis increases. The 
error is of the same order in the L2 sense for the three reduced 
models. However, we can notice that in the L∞ sense, RM3 
seems to be a little bit more accurate than the other two. 

 
TABLE I:ESTIMATION OF THE ERROR L2 AND L∞ ON THE FORCE AND THE 

ENERGY FOR Z=10 AND Z=30  
Error indicator Z L2force L∞force L2energy L∞energy 
RM1,err1 10 8.6 47.4 9.4 68.38 
RM1 err1 30 2.1 13.6 2.5 21.7 
RM2 err2 10 6.1 48.8 8.6 69.8 
RM2 err2 30 3.0 27.6 4.0 43.8 
RM3 err3 10 6.8 29.0 4.7 20.2 
RM3 err3 30 2.6 8.12 2.58 12.9  
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