Reduction of a Finite Element Parametric Model using Aaptive POD
Methods
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Model Order Reduction (MOR) methods enable reductia of the computation time when dealing with parameaized numerical
models. Among these methods, the Proper Orthogon&ecomposition (POD) method seems to be a good cadtatie because of its
simplicity and its accuracy. However, the accuracgtrongly depends on the choice the parameter set@ben to construct the reduced
basis. In this communication, we propose three diéfent procedures for an adaptive construction of te parameter set. The accuracy of
the three methods is compared on a 2D Finite Elememodel example in magnetostatics.
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denote Q as the quantity of interest which is adgaiic

function of X(p), it can be written under the form:

o design an electromagnetic device or to quarttify _ t
Timpact of uncertainties, parameterized models assled. Q=X(p) D(p) X(p) 2)

In order to obtain good accuracy, numerical motlalsed With D(p) a matrix. If the model (1) and (2) is appliedan
on the Finite Element (FE) method are often uség. i$sue is design process or for uncertainty quantificatidwe, humber of
then the computation time which can be very lorgeerlly if  calls (solutions) can be very high especially & tharameter
the number of parameters is high, more than abaldz&n. number M is significant due to the “curse of dimenality”.
Recently, Model Order Reduction (MOR) methods, ltke To decrease the computation time, one should €littnérthe
Proper Orthogonal Decomposition (POD) method or theumber of calls or reduce the size of the lineastey of
Reduced Basis (RB) method, have been applied @eguations (1). The POD method, detailed in theofualhg, is
computational electromagnetics for uncertainty difiaation one of the most popular MOR methods. Consider aoket
or design [1,2]. An approximation of the full paretmzed parametersp,...,pz) and the NxZ matrix of the associated
model (the original FE model) is then sought in mace solutions K(pi),....X(pz)). We define the linear spacé
spanned by a reduced basis, which enables oneltceghe spanned by the vectorX(p,),...,.X(pz)) and the NxR matrix
number of degrees of freedom [3]. The equationesysis Y (R<Z) of the vectorsW,,.. W), an orthogonal basis of the
much smaller than the full model. However, the agcy of  space K. The matri¥ can be obtained by a Singular Value
the reduced model is strongly related to the chaitdhe Decomposition (SVD) of the matriX. The idea of the POD
reduced basis which is obtained from the solutiointhe full method is to seek an approximation of the solutibifl) in
problem for particular parameter values. the spaceK, which means thaX(p) is approximated by the

In this communication, we propose to compare thre&ellowing linear combination:

iterative procedures to determine the reduced Hzesed on R
different error indicators. These approaches arapewed in X(p)= g Xr(P) = Zxri (p)‘l’i 3)
terms of accuracy on an example, a magnetic holderse i=1
geometry is defined by 11 parameters.

|I. INTRODUCTION

The approximation has to satisfy (1), which is not
generally possible because the equation system s
overdetermined. By applying the Galerkin methoe, ¥lctor

Il. REDUCTION OF APARAMETRIC MODEL USING POD X:(p) has to satisfy an RxR linear system of equations:

METHOD
The discretization of a parameterized magnetostatic Y'S(p) ¥ X.(p) = ¥'F(p) 4
problem using t_he FE method leads to the followlingar The size of the system (4) is then equal to R, Wfigcmuch
system of equations: lower than N, the size of the full system (1). Buéution of
S(p) X(p) = F(p) (1) the system is much faster reducing significantlye th

) ) computation time. The accuracy of the method isseallp
Where p=(p.,..,pv) are the M input parameter§(p) is the rejated to the choice of the parameteps,.(.,pz) used to
NxN stiffness matrixF(p) is the Nx1 source vector and N isgetermine the reduced basis. In the following, weppse

the number of degrees of freedom. The solul¢p) enables jfferent strategies to determine them adaptively.
one to determine the field distribution and alse tjuantities

of interest which are usually either linear funotoof X(p) ll. ADAPTIVE PROCEDURE

fl dratic functi ok f f
(flux) or quadratic functions ok(p) (energy or force). If we To determine adaptively the parameter set, an error



indicator is needed that provides information oe #rror
between the solutioK(p) of (1) and the solutioiX,(p) of (4)
for a given value of the input parametgrsThe idea is to

Ermi(p’i ) and Eu(p’i ).

: Symetry axis

obtain this information without solving (1), whids time | hme <--- Mobile plate (Iron)
consuming, that is to say without knowin(p). Let us —T & .

consider the step n of adaptive procedure to coctstthe <=1 Coil

reduced basid ,. The reduced basis has beeltained by YT T Core (Iron)
solving (1) for a parameter sgty{...,pn). We select now a set )

of new parameterspt,..p¥). In our case, k is equal to the hois ’ rmﬂ ]

number of parameters M and thés are determined from, — Lo le

by changing only the™ component ofp,. The reduced ha'ﬂ*‘ Taim §~ --- - Permanent magnet

problem (4) is solved for the k parameters and waotke L
X:(p") the k solutions. Then, the paramegérdeading to the hdo’ N R
highest error is selected to complete the paranseterThree
error indicators are proposed. The first error éatbr &'
consists in calculating the residual of (1):

Yoke (Iron)

Fig.li Half of the geometry of the magnetic holded the definition of the
pafamEterS ‘Lﬂhralmy rbobyeyﬁ:lmepyhclo, haimy henty hbob.hpm)

&'=R' R; with R=F(p)-S(p") ¥, X, (p") (5) The errors in the 1and L= sense are defined as:
We can see that iX.(p') is equal toX(p') then the N () _
indicator is equal to zero. We introduce a secongre ;(FRM'(p') Fri (p'))

indicatore, that is more oriented towards the calculation of €Tj" =
the quantity of interest Q defined in (2) and whiglgiven by:

£'=R'D(p) R; (6)

%FTUII (Pi)

Fru (Pi) ~ R (pi)|

(8)

w _ MaXgicn

Finally, we introduce an indicatogs based on the error €T N
estimator proposed in [4] which is given by: ZFfu” (pi)
i=1

&=R{' S'(po) R ) Table 1 shows the errors obtained for a reduceid bésize
The parameterp, is a “well chosen” value ofp. The Z=10 and Z=30 with the three reduced models. Theetirror
calculation of the inverse @&(py) has to be done only onceindicators leads to three different parameter @gts..,pz) and
before the adaptive process. The next parametaeypal; is so to three different models. We can see clearlyeaor
taken equal t@' which corresponds to the highest valuez,—bf reduction when the size Z of the reduced basieas®s. The
with j equal to 1,2 or 3 depending on the erroiidatbr used. error is of the same order in thédense for the three reduced
Now, the full problem (1) is solved f@=p,.;. A new reduced models. However, we can notice that in thiesknse, RM3
basis #.1 is calculating fromXn.=(X(p1),..., X(Pn),X(Pn+1)).  seems to be a little bit more accurate than therdtio.
The process is repeated until the error indicatauifficiently

Sma". TABLE |:ESTIMATION OF THE ERRORL? AND L ON THE FORCE AND THE
ENERGY FORZ=10AND Z=30
IV. EXAMPLE OF APPLICATION Error indicator Z L*orce L"force LZ%energy L"energy
, , RMZ,ery 10 8.6 47.4 94 6838
We consider a magnetic holder modelled by a 2D &d&or RM1 erg 30 2.1 13.6 25 21.7
potential formulation. The geometry of the devisedifined Smg erp ég g-(l) ‘213-2 j-g 22-2
H H H erp . . . .
by 11. parameters, _Wh|ch are repres_ented in F|ngje RM3 orr 10 6.8 290 47 20.2
quantity of interest is the force experienced bg thobile RM3 erg 30 26 8.12 258 129
plate when the coil is not energized (due onlyjhtopermanent
magnet). The force has been calculated using thewkla ACKNOWLEDGEMENT
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